Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.351
Filtrar
1.
Cell Physiol Biochem ; 58(2): 172-181, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643508

RESUMO

BACKGROUND/AIMS: Extracellular acidic conditions impair cellular activities; however, some cancer cells drive cellular signaling to adapt to the acidic environment. It remains unclear how ovarian cancer cells sense changes in extracellular pH. This study was aimed at characterizing acid-inducible currents in an ovarian cancer cell line and evaluating the involvement of these currents in cell viability. METHODS: The biophysical and pharmacological properties of membrane currents in OV2944, a mouse ovarian cancer cell line, were studied using the whole-cell configuration of the patch-clamp technique. Viability of this cell type in acidic medium was evaluated using the MTT assay. RESULTS: OV2944 had significant acid-sensitive outwardly rectifying (ASOR) Cl- currents at a pH50 of 5.3. The ASOR current was blocked by pregnenolone sulfate (PS), a steroid ion channel modulator that blocks the ASOR channel as one of its targets. The viability of the cells was reduced after exposure to an acidic medium (pH 5.3) but was slightly restored upon PS administration. CONCLUSION: These results offer first evidence for the presence of ASOR Cl- channel in ovarian cancer cells and indicate its involvement in cell viability under acidic environment.


Assuntos
Sobrevivência Celular , Neoplasias Ovarianas , Pregnenolona , Animais , Feminino , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Pregnenolona/farmacologia , Concentração de Íons de Hidrogênio , Sobrevivência Celular/efeitos dos fármacos , Canais de Cloreto/metabolismo , Canais de Cloreto/antagonistas & inibidores , Técnicas de Patch-Clamp , Potenciais da Membrana/efeitos dos fármacos
2.
Pflugers Arch ; 476(5): 809-820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38421408

RESUMO

Parathyroid hormone-related protein (PTHrP) released from detrusor smooth muscle (DSM) cells upon bladder distension attenuates spontaneous phasic contractions (SPCs) in DSM and associated afferent firing to facilitate urine storage. Here, we investigate the mechanisms underlying PTHrP-induced inhibition of SPCs, focusing on large-conductance Ca2+-activated K+ channels (BK channels) that play a central role in stabilizing DSM excitability. Perforated patch-clamp techniques were applied to DSM cells of the rat bladder dispersed using collagenase. Isometric tension changes were recorded from DSM strips, while intracellular Ca2+ dynamics were visualized using Cal520 AM -loaded DSM bundles. DSM cells developed spontaneous transient outward potassium currents (STOCs) arising from the opening of BK channels. PTHrP (10 nM) increased the frequency of STOCs without affecting their amplitude at a holding potential of - 30 mV but not - 40 mV. PTHrP enlarged depolarization-induced, BK-mediated outward currents at membrane potentials positive to + 20 mV in a manner sensitive to iberiotoxin (100 nM), the BK channel blocker. The PTHrP-induced increases in BK currents were also prevented by inhibitors of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (CPA 10 µM), L-type voltage-dependent Ca2+ channel (LVDCC) (nifedipine 3 µM) or adenylyl cyclase (SQ22536 100 µM). PTHrP had no effect on depolarization-induced LVDCC currents. PTHrP suppressed and slowed SPCs in an iberiotoxin (100 nM)-sensitive manner. PTHrP also reduced the number of Ca2+ spikes during each burst of spontaneous Ca2+ transients. In conclusion, PTHrP accelerates STOCs discharge presumably by facilitating SR Ca2+ release which prematurely terminates Ca2+ transient bursts resulting in the attenuation of SPCs.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Contração Muscular , Músculo Liso , Proteína Relacionada ao Hormônio Paratireóideo , Bexiga Urinária , Animais , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiologia , Bexiga Urinária/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ratos Sprague-Dawley , Masculino , Cálcio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia
3.
Cell Stress Chaperones ; 28(2): 151-165, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653727

RESUMO

Endoplasmic reticulum (ER) stress and associated oxidative stress are involved in the genesis and progression of skeletal muscle diseases such as myositis and atrophy or muscle wasting. Targeting the ER stress and associated downstream pathways can aid in the development of better treatment strategies for these diseases with limited therapeutic approaches. There is a growing interest in identifying natural products against ER stress due to the lower toxicity and cost effectiveness. In the present study, we investigated the protective effect of Tangeretin, a citrus methoxyflavone found in citrus peels against Tunicamycin (pharmacological ER stress inducer)-induced ER stress and associated complications in rat skeletal muscle L6 cell lines. Treatment with Tunicamycin for a period of 24 h resulted in the upregulation of ER stress marker proteins, ER resident oxidoreductases and cellular reactive oxygen species (ROS). Co-treatment with Tangeretin was effective in alleviating Tunicamycin-induced ER stress and associated redox-related complications by significantly downregulating the unfolded protein response (UPR), ER resident oxidoreductase proteins, cellular ROS and improving the antioxidant enzyme activity. Tunicamycin also induced upregulation of phosphorylated p38 MAP Kinase and loss of mitochondrial membrane potential. Tangeretin significantly reduced the levels of phosphorylated p38 MAP Kinase and improved the mitochondrial membrane potential. From the results, it is evident that Tangeretin can be explored further as a potential candidate for skeletal muscle diseases involving protein misfolding and ER stress.


Assuntos
Flavonas , Mioblastos Esqueléticos , Animais , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular , Flavonas/farmacologia , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Membranas Mitocondriais/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos
4.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209129

RESUMO

Excess synaptic glutamate release has pathological consequences, and the inhibition of glutamate release is crucial for neuroprotection. Kaempferol 3-rhamnoside (KR) is a flavonoid isolated from Schima superba with neuroprotective properties, and its effecton the release of glutamate from rat cerebrocortical nerve terminals was investigated. KR produced a concentration-dependent inhibition of 4-aminopyridine (4-AP)-evoked glutamate release with half-maximal inhibitory concentration value of 17 µM. The inhibition of glutamate release by KR was completely abolished by the omission of external Ca2+ or the depletion of glutamate in synaptic vesicles, and it was unaffected by blocking carrier-mediated release. In addition, KR reduced the 4-AP-evoked increase in Ca2+ concentration, while it did not affect 4-AP-evoked membrane potential depolarization. The application of selective antagonists of voltage-dependent Ca2+ channels revealed that the KR-mediated inhibition of glutamate release involved the suppression of P/Q-type Ca2+ channel activity. Furthermore, the inhibition of release was abolished by the calmodulin antagonist, W7, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, KN62, but not by the protein kinase A (PKA) inhibitor, H89, or the protein kinase C (PKC) inhibitor, GF109203X. We also found that KR reduced the 4-AP-induced increase in phosphorylation of CaMKII and its substrate synapsin I. Thus, the effect of KR on evoked glutamate release is likely linked to a decrease in P/Q-type Ca2+ channel activity, as well as to the consequent reduction in the CaMKII/synapsin I pathway.


Assuntos
Canais de Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Quempferóis/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Quempferóis/química , Potenciais da Membrana/efeitos dos fármacos , Estrutura Molecular , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos , Sinapsinas/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216258

RESUMO

Neuropathic pain is a form of chronic pain arising from damage of the neural cells that sense, transmit or process sensory information. Given its growing prevalence and common refractoriness to conventional analgesics, the development of new drugs with pain relief effects constitutes a prominent clinical need. In this respect, drugs that reduce activity of sensory neurons by modulating ion channels hold the promise to become effective analgesics. Here, we evaluated the mechanical antinociceptive effect of IQM-PC332, a novel ligand of the multifunctional protein downstream regulatory element antagonist modulator (DREAM) in rats subjected to chronic constriction injury of the sciatic nerve as a model of neuropathic pain. IQM-PC332 administered by intraplantar (0.01-10 µg) or intraperitoneal (0.02-1 µg/kg) injection reduced mechanical sensitivity by ≈100% of the maximum possible effect, with ED50 of 0.27 ± 0.05 µg and 0.09 ± 0.01 µg/kg, respectively. Perforated-patch whole-cell recordings in isolated dorsal root ganglion (DRG) neurons showed that IQM-PC332 (1 and 10 µM) reduced ionic currents through voltage-gated K+ channels responsible for A-type potassium currents, low, T-type, and high voltage-activated Ca2+ channels, and transient receptor potential vanilloid-1 (TRPV1) channels. Furthermore, IQM-PC332 (1 µM) reduced electrically evoked action potentials in DRG neurons from neuropathic animals. It is suggested that by modulating multiple DREAM-ion channel signaling complexes, IQM-PC332 may serve a lead compound of novel multimodal analgesics.


Assuntos
Analgésicos/farmacologia , Proteínas Interatuantes com Canais de Kv/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/complicações , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Ligantes , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
6.
Molecules ; 27(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011544

RESUMO

Natural plant compounds, such as betaine, are described to have nematocidal properties. Betaine also acts as a neurotransmitter in the free-living model nematode Caenorhabditis elegans, where it is required for normal motility. Worm motility is mediated by nicotinic acetylcholine receptors (nAChRs), including subunits from the nematode-specific DEG-3 group. Not all types of nAChRs in this group are associated with motility, and one of these is the DEG-3/DES-2 channel from C. elegans, which is involved in nociception and possibly chemotaxis. Interestingly, the activity of DEG-3/DES-2 channel from the parasitic nematode of ruminants, Haemonchus contortus, is modulated by monepantel and its sulfone metabolite, which belong to the amino-acetonitrile derivative anthelmintic drug class. Here, our aim was to advance the pharmacological knowledge of the DEG-3/DES-2 channel from C. elegans by functionally expressing the DEG-3/DES-2 channel in Xenopus laevis oocytes and using two-electrode voltage-clamp electrophysiology. We found that the DEG-3/DES-2 channel was more sensitive to betaine than ACh and choline, but insensitive to monepantel and monepantel sulfone when used as direct agonists and as allosteric modulators in co-application with betaine. These findings provide important insight into the pharmacology of DEG-3/DES-2 from C. elegans and highlight the pharmacological differences between non-parasitic and parasitic nematode species.


Assuntos
Aminoacetonitrila/análogos & derivados , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Aminoacetonitrila/farmacologia , Animais , Caenorhabditis elegans , Potenciais da Membrana/efeitos dos fármacos , Sulfonas/farmacologia , Xenopus laevis
7.
Biochem Biophys Res Commun ; 592: 44-50, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35026604

RESUMO

The purpose of this study was to investigate the antimicrobial effect and mechanism of slightly acidic electrolyzed water (SAEW) against Shewanella putrefaciens (S. putrefaciens) and Staphylococcus saprophytic (S. saprophyticus). The results showed that SAEW exhibited strong antimicrobial activity against tested bacteria, which was positively correlated to the available chlorine concentration (ACC) of SAEW. The mortality rate of S. putrefaciens and S. saprophyticus was up to 96% and 85%, respectively, when the ACC of SAEW was 60.0 mg/L. The results of scanning electron microscopy (SEM) showed that the cell morphology and structure were destroyed by SAEW. Besides, the results of confocal laser scanning microscopy (CLSM), leakage of DNA and protein provided evidence that SAEW induced membrane permeabilization in cells. Compared with the control, the intracellular reactive oxygen species (ROS) generated by SAEW was strengthened significantly with the increase of ACC, and the cells were injured to death accordingly.


Assuntos
Antibacterianos/farmacologia , Eletrólise , Shewanella putrefaciens/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Água/farmacologia , Antioxidantes/farmacologia , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , DNA Bacteriano/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Shewanella putrefaciens/ultraestrutura , Staphylococcus/ultraestrutura
8.
Biochem Pharmacol ; 197: 114928, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063442

RESUMO

Na+ channels undergo multiple inactivated states with different kinetics, which set the refractory period of neuronal discharges, but isolating the intermediate inactivated state has been challenging. Most classical Na+channel-inhibiting anticonvulsants bind to the fast inactivated state to reduce Na+currents and cellular excitability. These anticonvulsants have the slow binding kinetics and thus necessitate long depolarization for drug action, a "use-dependent" effect sparing most normal activities. Rufinamide is a new anticonvulsant targeting Na+channels, and has a therapeutic effect on Lennox-Gastaut syndrome (LGS) which is refractory to classicalNa+channel inhibitors. The efficacy on LGS, whose epileptiform discharges largely involve short depolarization or bursts, is primarily due to the very fast binding kinetics of rufinamide. Could the very fast kinetics of rufinamide lead to indiscriminate inhibition of neuronal activities ? Onhippocampal neurons from male and female mice, wefound that rufinamide most effectively shifts the Na+channel inactivation curve if the inactivating pulse is 1 s, rather than 0.1 or 18 s, in duration. Rufinamide also shows a maximal slowing effect on the recovery kinetics from the inactivation driven by modest depolarization (e.g. -60 mV) of intermediate length (e.g. 50-300 ms). Consistently, rufinamide selectively inhibits the burst discharges at 50-300 ms on a plateau of ∼-60 mV. This is mechanistically ascribable to selective binding of rufinamide to an intermediate inactivated state withan apparent dissociation constantof ∼40 µM. Being the first molecule embodying the evasive transitional gating state, rufinamide could have a unique anti-seizure profile with a novel form of use-dependent action.


Assuntos
Anticonvulsivantes/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Triazóis/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Estabilidade Proteica/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/química
9.
Cells ; 11(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053351

RESUMO

Freshly isolated primary cardiomyocytes (CM) are indispensable for cardiac research. Experimental CM research is generally incompatible with life of the donor animal, while human heart samples are usually small and scarce. CM isolation from animal hearts, traditionally performed by coronary artery perfusion of enzymes, liberates millions of cells from the heart. However, due to progressive cell remodeling following isolation, freshly isolated primary CM need to be used within 4-8 h post-isolation for most functional assays, meaning that the majority of cells is essentially wasted. In addition, coronary perfusion-based isolation cannot easily be applied to human tissue biopsies, and it does not straightforwardly allow for assessment of regional differences in CM function within the same heart. Here, we provide a method of multi-day CM isolation from one animal heart, yielding calcium-tolerant ventricular and atrial CM. This is based on cell isolation from cardiac tissue slices following repeated (usually overnight) storage of the tissue under conditions that prolong CM viability beyond the day of organ excision by two additional days. The maintenance of cells in their near-native microenvironment slows the otherwise rapid structural and functional decline seen in isolated CM during attempts for prolonged storage or culture. Multi-day slice-based CM isolation increases the amount of useful information gained per animal heart, improving reproducibility and reducing the number of experimental animals required in basic cardiac research. It also opens the doors to novel experimental designs, including exploring same-heart regional differences.


Assuntos
Pesquisa Biomédica , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Animais , Cálcio/farmacologia , Separação Celular , Forma Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Coelhos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
10.
Food Chem Toxicol ; 160: 112804, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990786

RESUMO

A significant rise in the incidence of obesity and type 2 diabetes has occurred worldwide in the last two decades. Concurrently, a growing body of evidence suggests a connection between exposure to environmental pollutants, particularly insecticides, and the development of obesity and type 2 diabetes. This review summarizes key evidence of (1) the presence of different types of neuronal receptors - target sites for neurotoxic insecticides - in non-neuronal cells, (2) the activation of these receptors in non-neuronal cells by membrane-depolarizing insecticides, and (3) changes in metabolic functions, including lipid and glucose accumulation, associated with changes in membrane potential. Based on these findings, we propose that changes in membrane potential (Vmem) by certain insecticides serve as a novel regulator of lipid and glucose metabolism in non-excitable cells associated with obesity and type 2 diabetes.


Assuntos
Membrana Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/etiologia , Poluentes Ambientais/toxicidade , Inseticidas/toxicidade , Obesidade/etiologia , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Exposição Ambiental/efeitos adversos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Obesidade/epidemiologia , Obesidade/genética , Obesidade/metabolismo
11.
Mol Pharmacol ; 101(3): 132-143, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34969832

RESUMO

Calcium- and voltage-gated K+ channels of large conductance (BKs) are expressed in the cell membranes of all excitable tissues. Currents mediated by BK channel-forming slo1 homotetramers are consistently inhibited by increases in membrane cholesterol (CLR). The molecular mechanisms leading to this CLR action, however, remain unknown. Slo1 channels are activated by increases in calcium (Ca2+) nearby Ca2+-recognition sites in the slo1 cytosolic tail: one high-affinity and one low-affinity site locate to the regulator of conductance for K+ (RCK) 1 domain, whereas another high-affinity site locates within the RCK2 domain. Here, we first evaluated the crosstalking between Ca2+ and CLR on the function of slo1 (cbv1 isoform) channels reconstituted into planar lipid bilayers. CLR robustly reduced channel open probability while barely decreasing unitary current amplitude, with CLR maximal effects being observed at 10-30 µM internal Ca2+ CLR actions were not only modulated by internal Ca2+ levels but also disappeared in absence of this divalent. Moreover, in absence of Ca2+, BK channel-activating concentrations of magnesium (10 mM) did not support CLR action. Next, we evaluated CLR actions on channels where the different Ca2+-sensing sites present in the slo1 cytosolic domain became nonfunctional via mutagenesis. CLR still reduced the activity of low-affinity Ca2+ (RCK1:E379A, E404A) mutants. In contrast, CLR became inefficacious when both high-affinity Ca2+ sites were mutated (RCK1:D367A,D372A and RCK2:D899N,D900N,D901N,D902N,D903N), yet still was able to decrease the activity of each high-affinity site mutant. Therefore, BK channel inhibition by CLR selectively requires optimal levels of Ca2+ being recognized by either of the slo1 high-affinity Ca2+-sensing sites. SIGNIFICANCE STATEMENT: Results reveal that inhibition of calcium/voltage-gated K+ channel of large conductance (BK) (slo1) channels by membrane cholesterol requires a physiologically range of internal calcium (Ca2+) and is selectively linked to the two high-affinity Ca2+-sensing sites located in the cytosolic tail domain, which underscores that Ca2+ and cholesterol actions are allosterically coupled to the channel gate. Cholesterol modification of BK channel activity likely contributes to disruption of normal physiology by common health conditions that are triggered by disruption of cholesterol homeostasis.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Citosol/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Citosol/efeitos dos fármacos , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Estrutura Secundária de Proteína , Ratos
12.
Clin Neurophysiol ; 133: 29-38, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794045

RESUMO

OBJECTIVES: To evaluate spectra and their correlations with clinical symptoms of local field potentials (LFP) acquired from wide- and close-spaced contacts (i.e. between contacts 0-3 or LFP03, and contacts 1-2 or LFP12 respectively) on the same DBS electrode within the subthalamus (STN) in Parkinson's disease (PD), before and after levodopa administration. METHODS: LFP12 and LFP03 were recorded from 20 PD patients. We evaluated oscillatory power, local and switched phase-amplitude coupling (l- and Sw-PAC) and correlation with motor symptoms (UPDRSIII). RESULTS: Before levodopa, both LFP03 and LFP12 power in the α band inversely correlated with UPDRSIII. Differences between contacts were found in the low-frequency bands power. After levodopa, differences in UPDRSIII were associated to changes in LFP03 low-ß and LFP12 HFO (high frequency oscillations, 250-350 Hz) power, while a modulation of the low-ß power and an increased ß-LFO (low frequency oscillations, 15-45 Hz) PAC was found only for LFP12. CONCLUSION: This study reveals differences in spectral pattern between LFP12 and LFP03 before and after levodopa administration, as well as different correlations with PD motor symptoms. SIGNIFICANCE: Differences between LFP12 and LFP03 may offer an opportunity for optimizing adaptive deep brain stimulation (aDBS) protocols for PD. LFP12 can be used to detect ß-HFO coupling and ß power (i.e. bradykinesia), while LFP03 are optimal for low frequency oscillations (dyskinesias).


Assuntos
Potenciais da Membrana/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Adulto , Idoso , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Estimulação Encefálica Profunda , Eletrodos Implantados , Feminino , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Potenciais da Membrana/efeitos dos fármacos , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/efeitos dos fármacos
13.
Neuropharmacology ; 203: 108885, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798130

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates a wide spectrum of biological processes including apoptosis, immune response and inflammation. Here, we sought to understand how S1P signaling affects neuronal excitability in the central amygdala (CeA), which is a brain region associated with fear learning, aversive memory, and the affective dimension of pain. Because the G-protein coupled S1P receptor 1 (S1PR1) has been shown to be the primary mediator of S1P signaling, we utilized S1PR1 agonist SEW2871 and S1PR1 antagonist NIBR to determine a potential role of S1PR1 in altering the cellular physiology of neurons in the lateral division of the CeA (CeL) that share the neuronal lineage marker somatostatin (Sst). CeL-Sst neurons play a critical role in expression of conditioned fear and pain modulation. Here we used transgenic breeding strategies to identify fluorescently labeled CeL-Sst neurons for electrophysiological recordings. Using principal component analysis, we identified two primary subtypes of Sst neurons within the CeL in both male and female mice. We denoted the two types regular-firing (type A) and late-firing (type B) CeL-Sst neurons. In response to SEW2871 application, Type A neurons exhibited increased input resistance, while type B neurons displayed a depolarized resting membrane potential and voltage threshold, increased current threshold, and decreased voltage height. NIBR application had no effect on CeL Sst neurons, indicating the absence of tonic S1P-induced S1PR1. Our findings reveal subtypes of Sst neurons within the CeL that are uniquely affected by S1PR1 activation, which may have implications for how S1P alters supraspinal circuits.


Assuntos
Núcleo Central da Amígdala/metabolismo , Potenciais da Membrana/fisiologia , Oxidiazóis/farmacologia , Somatostatina/biossíntese , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Tiofenos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Núcleo Central da Amígdala/efeitos dos fármacos , Feminino , Expressão Gênica , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Somatostatina/genética , Receptores de Esfingosina-1-Fosfato/agonistas
14.
Chembiochem ; 23(2): e202100516, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34783144

RESUMO

An NIR emitting (λem ≈730 nm) cyanine probe ExCy was synthesized in good yields by extending the π-conjugation length (i. e., with furan moiety) to the donor-accepter system. ExCy exhibited a large Stokes' shift (Δλ≈100 nm) due to strong intramolecular charge transfer (ICT), and high fluorescence quantum yield (Φfl ≈0.47 in DCM). Due to its low fluorescence in an aqueous environment (Φfl ≈0.007 in H2 O), the probe exhibited the potential of achieving a large fluorescence turn-on upon entering a hydrophobic cellular environment. Fluorescence confocal microscopy studies revealed that ExCy was readily excitable with a far-red laser line (i. e., 640 nm) while the corresponding emission was collected in the NIR region. ExCy exhibited excellent selectivity towards live cell mitochondria according to the co-localization studies. The probe also exhibited high photostability, long-term imaging ability and wash-free staining ability, when being applied to live cells. Our studies indicated that the mitochondrial localization of ExCy was dependent on the membrane potential of the mitochondria. ExCy was successfully utilized as a mitochondrial membrane potential dysfunction indicator to visually identify cells with mitochondrial dysfunction via fluorescence confocal microscopy. ExCy was further examined for potential in vivo imaging of zebrafish.


Assuntos
Corantes/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Corantes/farmacologia
15.
Biochim Biophys Acta Biomembr ; 1864(1): 183763, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506799

RESUMO

Doxorubicin (DOX) is one of the most efficient antitumor drugs employed in numerous cancer therapies. Its incorporation into lipid-based nanocarriers, such as liposomes, improves the drug targeting into tumor cells and reduces drug side effects. The carriers' lipid composition is expected to affect the interactions of DOX and its partitioning into liposomal membranes. To get a rational insight into this aspect and determine promising lipid compositions, we use numerical simulations, which provide unique information on DOX-membrane interactions at the atomic level of resolution. In particular, we combine classical molecular dynamics simulations and free energy calculations to elucidate the mechanism of penetration of a protonated Doxorubicin molecule (DOX+) into potential liposome membranes, here modeled as lipid bilayers based on mixtures of phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol lipid molecules, of different compositions and lipid phases. Moreover, we analyze DOX+ partitioning into relevant regions of SM-based lipid bilayer systems using a combination of free energy methods. Our results show that DOX+ penetration and partitioning are facilitated into less tightly packed SM-based membranes and are dependent on lipid composition. This work paves the way to further investigations of optimal formulations for lipid-based carriers, such as those associated with pH-responsive membranes.


Assuntos
Doxorrubicina/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Esfingomielinas/química , Colesterol/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Entropia , Humanos , Bicamadas Lipídicas/farmacologia , Lipossomos/química , Lipossomos/farmacologia , Lipídeos de Membrana/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Esfingomielinas/farmacologia
16.
Eur J Pharmacol ; 915: 174670, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863995

RESUMO

Hydroxychloroquine (HCQ) is a derivative of the antimalaria drug chloroquine primarily prescribed for autoimmune diseases. Recent attempts to repurpose HCQ in the treatment of corona virus disease 2019 has raised concerns because of its propensity to prolong the QT-segment on the electrocardiogram, an effect associated with increased pro-arrhythmic risk. Since chirality can affect drug pharmacological properties, we have evaluated the functional effects of the R(-) and S(+) enantiomers of HCQ on six ion channels contributing to the cardiac action potential and on electrophysiological parameters of isolated Purkinje fibers. We found that R(-)HCQ and S(+)HCQ block human Kir2.1 and hERG potassium channels in the 1 µM-100 µM range with a 2-4 fold enantiomeric separation. NaV1.5 sodium currents and CaV1.2 calcium currents, as well as KV4.3 and KV7.1 potassium currents remained unaffected at up to 90 µM. In rabbit Purkinje fibers, R(-)HCQ prominently depolarized the membrane resting potential, inducing autogenic activity at 10 µM and 30 µM, while S(+)HCQ primarily increased the action potential duration, inducing occasional early afterdepolarization at these concentrations. These data suggest that both enantiomers of HCQ can alter cardiac tissue electrophysiology at concentrations above their plasmatic levels at therapeutic doses, and that chirality does not substantially influence their arrhythmogenic potential in vitro.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Coração/efeitos dos fármacos , Hidroxicloroquina/química , Hidroxicloroquina/farmacologia , Canais Iônicos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/induzido quimicamente , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Canais de Potássio Éter-A-Go-Go , Humanos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Ramos Subendocárdicos/efeitos dos fármacos , Coelhos , Estereoisomerismo
17.
CNS Neurol Disord Drug Targets ; 21(4): 292-301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34477538

RESUMO

BACKGROUND: Regulation of glutamate release is crucial for maintaining normal brain function, but excess glutamate release is implicated in many neuropathological conditions. Therefore, the minimum glutamate release from presynaptic nerve terminals is an important neuroprotective mechanism. OBJECTIVE: In this mini-review, we analyze the three B vitamins, namely vitamin B2 (riboflavin), vitamin B6 (pyridoxine), and vitamin B12 (cyanocobalamin), that affect the 4-aminopyridine (4- AP)-evoked glutamate release from presynaptic nerve terminal in rat and discuss their neuroprotective role. METHODS: In this study, the measurements include glutamate release, DiSC3(5), and Fura-2. RESULTS: The riboflavin, pyridoxine, and cyanocobalamin produced significant inhibitory effects on 4-aminopyridine-evoked glutamate release from rat cerebrocortical nerve terminals (synaptosomes) in a dose-dependent relationship. These presynaptic inhibitory actions of glutamate release are attributed to inhibition of physiologic Ca2+-dependent vesicular exocytosis but not Ca2+-independent nonvesicular release. These effects also did not affect membrane excitability, while diminished cytosolic (Ca2+)c through a reduction of direct Ca2+ influx via Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, rather than through indirect Ca2+induced Ca2+ release from ryanodine-sensitive intracellular stores. Furthermore, their effects were attenuated by GF109203X and Ro318220, two protein kinase C (PKC) inhibitors, suggesting suppression of PKC activity. Taken together, these results suggest that riboflavin, pyridoxine, and cyanocobalamin inhibit presynaptic vesicular glutamate release from rat cerebrocortical synaptosomes, through the depression Ca2+ influx via voltage- dependent Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, and PKC signaling cascade. CONCLUSION: Therefore, these B vitamins may reduce the strength of glutamatergic synaptic transmission and is of considerable importance as potential targets for therapeutic agents in glutamate- induced excitation-related diseases.


Assuntos
Ácido Glutâmico/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Complexo Vitamínico B/metabolismo , 4-Aminopiridina , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo N , Córtex Cerebral/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos
18.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884781

RESUMO

This study investigated the effects of enmein, an active constituent of Isodon japonicus Hara, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) and evaluated its neuroprotective potential in a rat model of kainic acid (KA)-induced glutamate excitotoxicity. Enmein inhibited depolarization-induced glutamate release, FM1-43 release, and Ca2+ elevation in cortical nerve terminals but had no effect on the membrane potential. Removing extracellular Ca2+ and blocking vesicular glutamate transporters, N- and P/Q-type Ca2+ channels, or protein kinase C (PKC) prevented the inhibition of glutamate release by enmein. Enmein also decreased the phosphorylation of PKC, PKC-α, and myristoylated alanine-rich C kinase substrates in synaptosomes. In the KA rat model, intraperitoneal administration of enmein 30 min before intraperitoneal injection of KA reduced neuronal cell death, glial cell activation, and glutamate elevation in the hippocampus. Furthermore, in the hippocampi of KA rats, enmein increased the expression of synaptic markers (synaptophysin and postsynaptic density protein 95) and excitatory amino acid transporters 2 and 3, which are responsible for glutamate clearance, whereas enmein decreased the expression of glial fibrillary acidic protein (GFAP) and CD11b. These results indicate that enmein not only inhibited glutamate release from cortical synaptosomes by suppressing Ca2+ influx and PKC but also increased KA-induced hippocampal neuronal death by suppressing gliosis and decreasing glutamate levels by increasing glutamate uptake.


Assuntos
Apoptose/efeitos dos fármacos , Lesões Encefálicas/prevenção & controle , Diterpenos/farmacologia , Ácido Glutâmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Sinaptossomos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Lesões Encefálicas/induzido quimicamente , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Ácido Caínico/toxicidade , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neuroglia/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptofisina/metabolismo
19.
Biomed Res Int ; 2021: 2641068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722759

RESUMO

Gramicidin is a thoroughly studied cation ionophore widely used to experimentally manipulate the plasma membrane potential (PMP). In addition, it has been established that the drug, due to its hydrophobic nature, is capable of affecting the organization of membrane lipids. We have previously shown that modifications in the plasma membrane potential of epithelial cells in culture determine reorganizations of the cytoskeleton. To elucidate the molecular mechanisms involved, we explored the effects of PMP depolarization on some putative signaling intermediates. In the course of these studies, we came across some results that could not be interpreted in terms of the properties of gramicidin as an ionic channel. The purpose of the present work is to communicate these results and, in general, to draw attention to the fact that gramicidin effects can be misleadingly attributed to its ionic or electrical properties. In addition, this work also contributes with some novel findings of the modifications provoked on the signaling intermediates by PMP depolarization and hyperpolarization.


Assuntos
Gramicidina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Gramicidina/efeitos adversos , Gramicidina/farmacologia , Canais Iônicos/metabolismo , Íons/metabolismo , Microtúbulos/metabolismo , Cultura Primária de Células , Transdução de Sinais/fisiologia
20.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768876

RESUMO

The glutamatergic neurotransmitter system has received substantial attention in research on the pathophysiology and treatment of neurological disorders. The study investigated the effect of the polyphenolic compound chlorogenic acid (CGA) on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). CGA inhibited 4-aminopyridine (4-AP)-induced glutamate release from synaptosomes. This inhibition was prevented in the absence of extracellular Ca2+ and was associated with the inhibition of 4-AP-induced elevation of Ca2+ but was not attributed to changes in synaptosomal membrane potential. In line with evidence observed through molecular docking, CGA did not inhibit glutamate release in the presence of P/Q-type Ca2+ channel inhibitors; therefore, CGA-induced inhibition of glutamate release may be mediated by P/Q-type Ca2+ channels. CGA-induced inhibition of glutamate release was also diminished by the calmodulin and Ca2+/calmodilin-dependent kinase II (CaMKII) inhibitors, and CGA reduced the phosphorylation of CaMKII and its substrate, synapsin I. Furthermore, pretreatment with intraperitoneal CGA injection attenuated the glutamate increment and neuronal damage in the rat cortex that were induced by kainic acid administration. These results indicate that CGA inhibits glutamate release from cortical synaptosomes by suppressing P/Q-type Ca2+ channels and CaMKII/synapsin I pathways, thereby preventing excitotoxic damage to cortical neurons.


Assuntos
Canais de Cálcio/metabolismo , Ácido Clorogênico/farmacologia , Ácido Glutâmico/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Ácido Clorogênico/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios , Ácido Glutâmico/efeitos dos fármacos , Ácido Caínico/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...